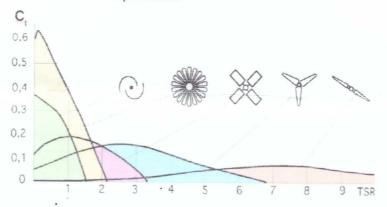
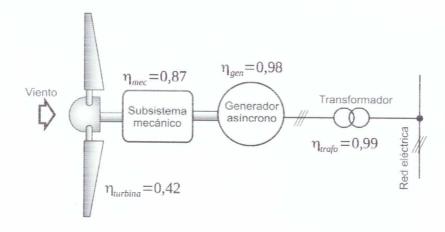
Examen


Nombre:

Fecha: 23/03/2022


- Se cuenta con datos del viento tomados por un anemómetro ubicado en una torre a 10m sobre el suelo en una región de bosques. La velocidad promedio del viento en ese lugar es de 7,75 m/s. En ese lugar se quiere instalar un aerogenerador de eje vertical tipo Savonius, con un diámetro de rotor de 1,45m y una altura de 2,55m, sobre una torre de 22m.
 - a) (2pt) ¿Cuál es la velocidad promedio del viento a la altura del aerogenerador?
 - b) (2pt) Calcula la potencia del viento a la altura del aerogenerador.

Tipo terreno	β	z ₀ (m)
Liso (mar, arena, nieve)	0,10-0,13	0,001-0,02
Moderadamente rugoso (hierba, campos cereales, regiones rurales)	0,13-0,20	0,02-03
Rugoso (bosques, barrios)	0,20-0,27	0,3-0,2
Muy rugoso (ciudades, altos edificios)	0,27-0,40	2-10

- Un determinado aerogenerador tiene un coeficiente de torque C_t=0,3 y la razón de velocidad de punta de pala TSR=0,8.
 - a) Observando el gráfico, determine el tipo de aerogenerador
 - b) ¿Cuánto vale su coeficiente de potencia?

- 3. En un lugar con una velocidad promedio del viento de 7,6 m/s, se va a instalar un aerogenerador de eje horizontal, con un diámetro del rotor de 35 m. Considerando las eficiencias que se muestran en la imagen.
 - a) (2pt) Determine la potencia mecánica que ingresa al generador asíncrono
 - b) (2pt) Determine la potencia que entrega a la red eléctrica

